Transcriptomic analysis of metabolic resistance in two F2-blackgrass populations segregating for resistance to ALS- and ACCCase-inhibitors

Michael U. Höfer1, Friedrich Felsenstein2, Maria Rosenhauer3, Björn Rotter4, Peter Winter4, Jan Petersen3
1RLP-AgroScience GmbH - Alplari, Neustadt a. d. Weinstraße;
2Epilog GmbH, 85354 Freising, Germany;
3Fachhochschule Bingen, 55411 Bingen am Rhein, Germany
*GenXPro GmbH, Frankfurt am Main.

1. Introduction:
In order to identify candidate genes for metabolic herbicide resistance in blackgrass (Alopecurus myosuroides) a transcriptomics approach was chosen to determine genome-wide gene expression in green leaves of F2 plants which derived from single plant crosses of a sensitive wild type with two highly resistant blackgrass biotypes from Germany showing different resistance patterns to herbicides with different modes of action. The resistant parents were check for the absence of known target site mutations for ALS and ACCCase. The two segregating F2-populations obtained were phenotypically assessed for resistance against ACCCase- (fenoxaprop-P-ethyl) and ALS-inhibitors (mesosulfuron & iodosulfuron). Sensitive as well as the most resistant F2-individuals were pooled respectively and used for a bulk segregant analysis of gene expression by means of a 3’-specific next generation sequencing technology called MACE (= massive analysis of 3’-cDNA ends) on an Illumina HiSeq2000 with 1 x 100 bp reads.

2. Reference transcriptome:
A reference transcriptome for blackgrass was established by means of a paired-end (2 x 100 bp) RNA-Seq protocol and four normalized RNA templates prepared from leaves of a metabolic resistant biotype. From a selected single resistant plant four two months old vegetative clones were chosen (one control, three after 4 h, 8 h & 25 h after treatment with Iodosulfuron + Mesosulfuron). Quality-checked and processed data comprised approx. 105 Mbp finally resulting in 51609 contigs which could be annotated to the SWISSPROT database.

3. Bulked segregant analysis of two F2 populations and MACE:
Out of 2 offsprings (n≈ 200) respectively leaf samples from the most resistant and sensitive F2-individuals were pooled and total RNAs were used for the construction of 3’-specific Massive Analysis of cDNA Ends (MACE) libraries. Appr. 7 - 25 million MACE-reads corresponding to the same number of transcripts were obtained by means of Illumina HiSeq2000 sequencing. Quality checked MACE reads were mapped to the reference transcriptome for identification of the corresponding transcripts. Gene expression levels were determined by counting the frequencies of MACE reads found for each contig in the different metabolic resistant parental biotypes, the sensitive wild type and the derived bulks and normalized to “reads per million”.

4. Preliminary expression results and outlook:
By means of comparison of gene expression levels in sensitive and resistant bulks as well as in their corresponding resistant and sensitive parents putative candidate genes involved in detoxification pathways can be detected and may correlate with the metabolic resistance phenotype. Candidate genes involved in herbicide resistance are currently tested by qPCR using the original set of individual RNA samples as well as on a broader set of F2-individuals exhibiting varying degrees of metabolic resistance against different herbicides of different mode of action.

Funding of this ZIM-project by the Arbeitsgemeinschaft industrieller Forschungsvereinigungen “Otto von Guericke” e.V., Berlin is gratefully acknowledged; Förderkennzeichen: KF 2448406 MD1.