An interactive web-based application for mapping herbicide resistant weed

S. Panozzo ¹, M. Colauzzi ², L. Scarabel ¹, A. Collavo ¹, V. Rosan ¹, M. Sattin ¹

¹ Institute of Agro-environmental and Forest Biology (IBAF) - National Research Council (CNR), Viale dell’Università 16, 35020 Legnaro (PD), Italy

² Free-lance webmaster, Via Adua 5, 35141 Padova, Italy
Why monitoring and mapping the diffusion of resistance?

• *No much time to discuss this...*
• The earlier, the cheaper, the more updated and accurate, the faster is efficiently disseminated the better it is
• Obviously the end result is a compromise
• Users: farmers, advisors, researchers, national and local decision makers as well as the agrochemical industry
GIRE®: Italian herbicides resistance working group

WHO: Multi-stakeholders group involving academy, public research, agrochemical industry and advisors dealing with herbicide resistance in Italy

WHAT:
- Regular update of the herbicide resistance status in all cropping systems and throughout the country
- Improve resistance management by encouraging a responsible use of herbicides as well as cooperation and communication between public and private researchers
- Devise and disseminate general and specific guidelines for resistance management

HOW:
- Complaint monitoring
- Collect R fields history
- Robust and standardized whole plant greenhouse bioassays to test herbicide resistance

... In 1997...
Complex situation continuously evolving:

- 35 resistant biotypes
- Involving 22 species (14 monocots)
- 13 regions interested
- GIRE estimates that more than 200,000 ha are infested
- Several cropping system are involved: rice, wheat, maize, soybean/tomato, lucerne and perennial crops
- More than 1,800 populations in the GIRE database

Need for a better system to create and view maps of resistance...

... In 2009...

www.resistenzaerbicidi.it

- Comprehensive information on herbicide resistance in Italy and on the main biological traits of the weeds involved
- resistance management guidelines (general and specific)
- all literature on Italian herbicide resistant cases
- News and highlights
- **maps of the resistant cases (and list of municipalities involved)**

... Now ...

![Graph showing the evolution of herbicide resistance in Italy](chart.png)

- Cumulated no. of R biotypes
- Cumulated no. of R species
- EPSPS inhib.
- ALS inhib.
- ACCase inhib.
- PSII inhib.

GIRE database...
iMAR: Interactive MApping of Resistance

Based on open source software
The map-generation process

It involves sequential steps with several different software components interact with each other, under the coordination of PHP software-code specifically developed.
The most important software elements of the new system

• **The logic of the system**
 The data flow and the site structure is based upon PHP software code, developed within the CodeIgniter software platform

• **mySql db of resistant populations**
 Most relevant stored information:
 - Populations description (resistant species, crops involved, herbicides tested, HRAC groups, resistance level)
 - Geographic localization (Italian region and municipality)
 - Accessory information

• **mySql db of geometrical data**
 It contains the geometrical information (delineations) of regions and municipalities

• **OpenLayers**
 It is an open source JavaScript library for displaying map data in web

• **OpenStreetMap (OSM)**
 It is a collaborative project to create a free editable map of the world. In our context it provides the base layer maps
Most important tables and relations of the databases

Resistance db (mySql)
- **Active_ingredient**
 - id
 - id_HRAC
 - id_chemical_family
 - active_ingredient
- **Type_of_resistence**
 - id
 - id_population
 - id_active_ingredient
 - id_HRAC
 - date
 - resistance
- **HRAC_group**
 - id
 - HRAC_code
 - type_of_resistence
 - action_mechanism
 - group_acronym
- **Population**
 - id
 - id_weed
 - id_cropping_syst
 - id_farm
 - population_code
 - sub_code
 - id_municipality
 - locality
 - population_origin
 - GIRE
 - note
 - coordinates_GM
 - year
 - date
- **Weed**
 - id
 - bayer_code
 - genus_species
 - italian_name
 - english_name
 - link_doc
- **Cropping_system**
 - id
 - botanical_species
 - crop_name
 - description

Geographic db (mySql)
- **Geom_municip_Italy**
 - id
 - shape
 - id_region
 - municipality_code
 - name
- **Geom_regions_Italy**
 - id
 - shape
 - region_code
 - name
Example: *Papaver rhoeas*

Static maps

A map has to be created for each case of herbicide resistance involving *Papaver rhoeas* in wheat

ALS inhibitors

Synthetic auxins (2,4-D)

ALS inhibitors + Synthetic auxins (2,4-D)

3 maps to describe all cases of HR reported in *Papaver rhoeas*
Dynamic map

All cases of herbicide resistance involving *Papaver rhoeas* are visualized in a unique map.
Example: *Lolium* spp.

Static maps

A map has to be designed for each case of herbicide resistance involving *Lolium* spp.

7 maps to describe all cases of HR reported in *Lolium* spp.!!
Dynamic map

All cases of herbicide resistance involving *Lolium* spp. are visualized in a unique map.
Advantages of iMAR compared to the previous mapping systems

- Data are uploaded directly in an online database (not accessible to the public) where every resistant weed population is represented by a string containing various info which identify the population as unique
 → fewer errors of input and transfer of the data

- Users choose the features (type of resistance, weed species, region of interest and cropping system) and the map is automatically generated by the system
 → customized maps

- The system is automatic, easy to use, always updated and cheap because the maps are built using open source software tools
 → rationalization of resources
 → improves the transfer of information
 → already used by stakeholders, including decision makers
THANKS FOR YOUR ATTENTION!