Current status of herbicide resistance in *Alopecurus myosuroides* in Europe

Jan Petersen and Maria Rosenhauer
University of Applied Sciences Bingen; Germany

EWRS WG herbicide resistance – Frankfurt 19.5.2014

with contributions from:

Kazimierz Adamczewski (PL)
Benny De Cauwer (B)
Christophe Délye (F)
Kateřina Hamouzová (CZ)
Richard Hull (UK)
Solvejg Kopp Mathiassen (DK)
Erwin Mol (NL)
Bernd Sievernich (D)
Judith Wirth (CH)

and members of German board of herbicide resistance at JKI
Black-grass (ALOMY) – a major grass weed

- Most noxious grass weed in N-W Europe (Moss et al., 2007, Weed Technology 21:300-309)
- Adapted to winter crops (esp. cereals) (life cycle & herbicide resistance)

Alopecurus myosuroides

ALOMY highest infestation

History of herbicide resistance in black-grass

- Data source: Heap 2014
Resistance mechanisms in ALOMY

- enhanced metabolic resistance (start of evolution and still ongoing – multiple resistance to many mode of actions, today max. 6)
- 7 SNP’s in ACCase lead to 5 amino acid substitutions
 - pos. 1781
 - pos. 2027
 - pos. 2041
 - pos. 2078
 - pos. 2096
- 3 SNP’s in ALS lead to 2 amino acid substitutions
 - pos. 197
 - pos. 574
- Combinations of different mutations/EMR quite common
ALOMY infested area (ha) and occurrence of resistance in Europe

<table>
<thead>
<tr>
<th>country</th>
<th>(tsd. ha)</th>
<th>resistance (%)</th>
<th>area (tsd. ha)</th>
<th>ACCase</th>
<th>ALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>187</td>
<td>10</td>
<td>18.7</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>CH</td>
<td>10</td>
<td>5</td>
<td>0.5</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>CZ</td>
<td>1</td>
<td>5</td>
<td>0.05</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>2500</td>
<td>35</td>
<td>875</td>
<td>85</td>
<td>30</td>
</tr>
<tr>
<td>Dk</td>
<td>60</td>
<td>10</td>
<td>6</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>4200</td>
<td>60</td>
<td>2520</td>
<td>65</td>
<td>35</td>
</tr>
<tr>
<td>Lux</td>
<td>3</td>
<td>20</td>
<td>0.6</td>
<td>100</td>
<td>10</td>
</tr>
<tr>
<td>NL</td>
<td>100</td>
<td>25</td>
<td>25</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>PL</td>
<td>250</td>
<td>1</td>
<td>2.5</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>S</td>
<td>40</td>
<td>20</td>
<td>8</td>
<td>100</td>
<td>30</td>
</tr>
<tr>
<td>TR</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>UK</td>
<td>1500</td>
<td>80</td>
<td>1200</td>
<td>95</td>
<td>50</td>
</tr>
<tr>
<td>total</td>
<td>8851</td>
<td>52.6</td>
<td>4656</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Alopecurus resistance profile by country as % frequency of resistance classes RR+RRR

- pinoxaden
- clodinafop
- fluazifop
- cycloxydim
- tepraloxydim
- metazachlor
- flufenacet
- pendimethalin
- methalin
- prosulfocarb
- imazamox
- pyroxsulam
- mesosulfuron/iodosulfuron

- Germany (54)
- France (76)
- BE & NL (53)
- UK (55)

n= 238 populations
(2009-2012)
BASF Sievernich 2013
Distribution of Alopecurus resistance mechanism by country

- not resistant
- NTSR
- TSR(A)+NTSR
- TSR(B)+NTSR
- TSR(A+B)+NTSR
- TSR(A)
- TSR(B)
- TSR(A+B)

Germany 53%
France 43%
Great Britain 88%
BE & NL 87%

NTSR involved

n= 238 population (2009-2012)
BASF – Sievernich 2013
Development of Cycloxydim resistance in Germany 2008-2013

2008 (n = 111)
2009 (n = 68)
2010 (n = 53)
2011 (n = 35)
2012 (n = 117)
2013 (n = 91)
Development of ACCase resistance in ALOMY at the German Baltic coast line

Rosenhauer et al. 2013
biotype 1

Meso. + iodos. Pyroxsulam Pinoxaden
Cycloxydim
Pyroxsulam + Prosulfocarb + Pinoxaden
Summary / conclusions

- Area of ALOMY infestation in Europe is still increasing (> 9 mio. ha)
- In all countries where ALOMY is present, there are also herbicide resistant biotypes – resistance on ~ 4.5 mio. ha
- There is a gradient from west to east (more problems in western parts)
- In most cases evolution steps are:
 1. moderate NTSR (e.g. CTU, fenoxaprop, flupyrsulfuron)
 2. + ACCase TSR
 3. + ALS TSR
 4. or/and strong NTSR
- Not only problems in monocropping of cereals – more and more in wider rotations incl. dicot crops
- also problems controlling ALOMY in dicot crops and maize
- More use of herbicides (sequential applications, glyphosate treatments)
- Need to integrate more agronomic control options
- Need to site specific choice of herbicides that correspond to current herbicide resistant status on each individual field (how?)
Distribution of ACCase TSR in ALOMY between 2004 and 2012 (n = 654)

Rosenhauer et al. 2013
Distribution of meso-/ iodosulfuron resistance in ALOMY between 2007-2013